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ABSTRACT

A performance analysis of Binary Orthogonal Frequency Shift
Keying (BFSK) Fast Frequency Hopped (FFH) receivers implemented
with both square-law and envelope detectors is performed. Bit
error probabilities of the two types of receivers for linear
combining, noise-normalization combining, and self-normalization
combining under worst-case partial-band interference with
nonselective Rician fading and thermal noise are compared. The
analysis is repeated for the case of no interference to point out
the effect of fading. A study of nonlinear diversity combining
receivers (self-normalization and noise-normalization) is also
performed for a system model that is free from thermal noise.
Envelope and square-law detectors for particular types of
nonlinear combining investigated do not differ in performance, but
this is not true for linear combining detectors. The visible
superiority of envelope detectors for linear combining is noted.
Nonlinear combining receivers achieve a diversity and performance

improvement compared to linear combining receivers.
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I. INTRODUCTION

Previous studies have proven that Fast Frequency Hopped
(FFH) Spread-spectrum communication systems are alternatives
to conventional systems under the presence of multipath fading
and/or partial-band interference.

Difficulties in synchronous carrier recovery in a
multipath fading environment enables noncoherent orthogonal
FFH Binary Frequency Shift Keying (FFH-BFSK) modulation to be
an attractive choice [Ref. 1]. At the receiver, demodulation
of the dehopped signal is performed by a circuit implemented
with bandpass filter and envelope detector arrays. Envelope
and square-law detectors are used interchangeably. Their
performances have been proven to be identical for some cases,
and have been accepted as identical for the others. An
envelope detector is easier to implement, while a square-law
detector is easier to obtain analytical result for. This
assumption of identical performance is examined for FFH-BFSK
orthogonal noncoherent modulation systems with L-fold
diversity and both linear (ordinary FFH-BFSK) and nonlinear
combining. For the latter case, two systems are analyzed:

1. Noise-normalization (Adaptive Gain Control (AGC) [Ref.
2]) combining in which noise and interference statistics are

assumed to be known or predicted.




2. Self-normalization combining which does not require the
noise and interference statistics to be known.

In order to make the research applicable to satellite-to-
mobile applications a Rician fading channel is assumed.

The performances of the systems are also inspected under
the absence of interference to emphasize the effect of fading.
As a special case both of the nonlinear combining systems are
analyzed under the absence of the thermal noise to show the
effect of the thermal noise on the performances of the
systems.

Chapter II presents background information, and a
description of the models, and evaluation of the bit error
rates are given in Chapter III. In chapter IV, numerical

results are presented. Conclusion are given in Chapter V.




II. BACKGROUND INFORMATION

The behavior of envelope and square-law detectors are
analyzed with a model similar to that presented in [Ref. 1]
and [Ref. 3}.

FFH-BFSK communication systems employing a diversity level
of L, communicating over a channel of bandwidth W, are assumed
to be effected by an interference source. The interference is
assumed to be an additive narrow-band Gaussian process over an
equally probable portion y of the channel bandwidth W. The
BFSK modulator represents a binary input 1 with the frequency
f, and a binary input 0 with that of f,,in a binary symmetric
channel model scheme. The bit duration of T, is equally
divided into L chips. The bit rate is R, =1/T,, and the
hopping rate is R=L/T_, =LR,. The binary signal is passed
through a baseband filter of bandwidth R+R,. The output of
the baseband filter modulates the signal generated by a
frequency hop synthesizer. The frequency hop synthesizer is
driven by a pseudorandom code generator. The hopping
frequency f, is a discrete uniform process taking one of the
N possible levels where N=W/R,. The modulated signal is
filtered by a baseband filter of bandwidth R,, upconverted by

a RF oscillator, and transmitted.




If the cell bandwidth is small compared to the channel
coherence bandwidth, the fading process can be modelled as
frequency nonselective; furthermore, if the channel bandwidth
is large enough to assign a minimum spacing between two
consecutive hopping frequencies that is large compared to the
coherence bandwidth of the channel, each cell fades
independently. Under these assumptions the amplitude of the
dehopped signal is modelled as a Rician random variable. The
intensity of the fading is assumed to be constant for the
entire bandwidth, as a result, the statistics of the L Rician
random variables affecting the L hops of a bit are equal.

The interference is assumed to be additive white Gaussian
noise. Whether the interference is a deliberate jammer or a
coincidental narrowband process, it is not always possible to
maximize the negative impact on the performance of the
communication link when the finite energy is spread over the
entire bandwidth. Reference 4 shows that for the linear
combining square-law detector, especially with relatively high
diversity levels (when the number of hops per bit is greater
than 2), it is not an effective jamming strategy to distribute
the total jamming power uniformly over the entire bandwidth
even when the signal and the interference energies are equal
at the receiver RF circuit. When the jamming power is not
distributed uniformly over the entire bandwidth, there exists
a certain portion (y) of bandwidth that maximize the Bit Error

Rate (BER) as a function of the variables:




1. Interference energy.

2. Thermal noise energy.

3. Detector type.

4. Hopping rate.

5. Severity of fading.

The average power spectral density (PSD) of the narrowband
interference is N,/2 when spread over the entire bandwidth W;
therefore, the conditional partial-band interference PSD is

N,/2y if it is present, zero otherwise.




IIXI. SYSTEM AND WAVEFORM ANALYSIS

A. DESCRIPTION OF THE WAVEFORMS

The interference power is uniformly distributed over yW Hz
of the total system bandwidth W. The received signal after
the k' dehopping, where k is an integer taking a value from

1 to L, is represented as:

S (t)+n (t)+i,(t) with probability y
Zlt) = s, () +n, (t) with probability (1-v) (1)

(k-1) t,<tskrt,

where s, (t) is the information carrying signal affected by
fading, n, (t) is the thermal noise component, and i, (t) is the
interference noise component. The information carrying signal
in the k™ hop interval is:

st < a,/28 cos(2nf,t +0,) binary 1 is sent (2)

. a,/28 cos(2nf,t+¢,) binary 0 is sent
where 68, and ¢, are random phases uniformly distributed over
(0,2[) . The average signal power is akzs, and a, is a Rician
random variable. Channel fading 1is assumed to be slow
compared to the hoptime, but each hop is assumed to be
independent. The statistics of a, are assumed to be identical
for each chip of a bit. The probability density function of
is:

ay




a —(a2+a2 2
fAk(ak) — _o_g e (ag+A®) / (20%) IO(% ak) ak > 0 (3)

where A% is the signal strength of the nonfaded (direct)
component and 20° is the mean-squared value of the Rayleigh-

faded (diffuse) component. I,(.) Represents the modified

Bessel function of zero order.

B. DESCRIPTION OF THE BYSTEMS, AND ANALYSIS OF THE SYSTEM

PERFORMANCES UNDER MULTIPATH FADING, PARTIAL-BAND INTERFERENCE

AND THERMAL NOISE.

1. Linear Combining Receivers

a. Envelope Detector

A linear combining envelope detector receiver is
depicted in Fig. 1. Assuming that a binary 1 is sent, we

ocbtain the sampled detector outputs contaminated with only

wideband thermal noise as:

= 2 : 2
X = ‘/(ak v2S cosb, + n_ )? + (a, v25 sinb, + n, ;
Y
X2k = By * Ny,

and with narrowband interference added as:

(4)

_ — . ;
X, = J (ay V25 cos®, + n. + i, )% + (&, y25 8inb, + n, + 1

(5)

- y 2 y 2
XZk - \/7(1'2,:" * lczk ) * (nsn * lszk)




where N Ny j=1,2 are independent thermal noise components
in the channels at the sampling instants t=kr, (where 7,=1/R,).
Both are assumed to be independent zero mean Gaussian random
variables with equal variances o¢/=N,B, where B is the cell

bandwidth which is equal to the hopping rate R,. The

1

interference components i are both narrowband zero

cjk’ sjk’

mean Gaussian random variables with a variance of 012 = NB /v.

Equation (4) and (5) can be represented as

X =y (@28 cosby + v )% + (a,/255in0, + v,,)2

p) p)
Xk =y Vak + Vg

(6)

where v.s (i=1,2 3,4) are independent zero mean Gaussian

random variables with equal variances akzz

oy = N,B with probability (1-vy)
o = (7)
07 = 04 + 03 = (N, + N;/Y)B with probability ¥y

Narrowband interference, when present, is assumed to affect
both channels. The conditional probability density functions

for x, and x, are given in Ref. 5:

_ (ka * ZSJ:)

X. 2
_ 1k 20} 25
Ly ora, (X/ay) = —; e I, ‘CZ A Xjx| X 20
Ok Ok
(8)
_ X3y
pre 2
- - X 20
Ly, i, (Xa/a) = £y (x5,) = — e X 2 0
O




The unconditional probability density function of the
envelope of the output of channel one, o (X4,), is obtained
by integrating:

£

X (Kak) = f Ly uaXuday) £, (a)) day (©)
0

to get

- _(25, 1)
f ak e 20: 202
¢}

_( ka) A2

x — (A2
- 1k 20 (20’)
£y, (%) e e =

2
Ok

x da,

ag oi

A 25
Io('—g ak) Io(’Cxlkak)
(10)
Without loss of generality, S is normalized to unity, and
equation (10) is evaluated to obtain

xlk e'pk/(l’fk)

ol 1+&,

-x3/ (20} (148, 1

fx“(xlk) e

b X, 20
o‘i (1+Ek) lk]] 1k

10(41“_ x

1)
where pk=A5QHZ is the signal-to-noise ratio of the nonfaded
(direct) component of the k™ hop of a bit and §, = 20%/02 is
the signal-to-noise ratio of the Rayleigh faded (diffuse)
component. It is possible to normalize A? to unity and

equation (11) becomes




~px/ (1) e-pkxfgllz(loi,,)]

X €
(12)
X, 20

V2P,
X-%(j:f: X1k

The bit error probability for the receiver in Fig. 1 in

the presence of partial-band interference is

L
pE) =Y () ¥ -y ple/D) (1)
1=0

where P(e/l) is the conditional bit error probability when 1

of L hops of a bit have interference, and is given as

Ple/1) = Prixsx,/1) =[fy (x/D)|[ £y (x,/ 1) dx,|dx,
o} X,
’ (14)
where both x; and x, are the sum of L independent random

variables, 1 of which are interfered. Thus,

I, (/1) = fra (X)) » £587 (xa))
(15)
£y (%,/1) = f;é)qu)) * fggan(xéﬁn

where *m is m-fold linear convolution, and the superscript (1)
and (0) denote the random variables with and without
interference, respectively. In the following, the
superscripts are attached only to the names of the functions,
not to the variables and the constants.

Analytic solutions for f£,,(x,/1) and f,,(%X,/1) 1include

nested infinite summations which make P(E) tedious to obtain

10




numerically. The following approach is preferred for numeric

results.
Define
(1)
F (x ) - Ly, (%) X, S M (16)
X ‘Mlk
0 X > M
and
(m
— () X, S M
f)éo) (Xlk) - 1k 1k (17)
* 0 X > M
where M = max { M,,M,} and
M,
ff“’ (%)) .dxg, &1 and ff‘°’ (x,,) .dx, a1 (18)
0
For the linear combining detector, M=M,. Define
£10
— (x,,) X,, S N
f;O) (xzk) - XZk 2k 2k (19)
* 0 X > N
and
£
- (X,,) X, SN
f‘él) (xzk) = xzk 2k 2k (20)
= 0 X, > N
where N=max{N,,N,},
f £ (x,,) dx,, a1 and f £52 (%) .dx;, 61 1)

and M/N is chosen as integer. It is easier to explain the

method used when M=N. Define

11




S(1) _ F(1) M
£V o= £l (Xlk)lxu:(nq).A where —-+12n21 (2)
where A is the distance between samples that are taken from

the pdfs.

£9(n) = £L9(x,,)
X1k (n) Xk (X1 Ix,,:(n—l).a

£ (n) = £40) (x50

(23)

X,5=(n-1) .8

(1) - F
f:%k (n) 139k (}{2k)|x§,=(n-1>.A

Probability density function for x; and x, can be

approximated as f,, (n) and f ,,(n) where
£y (n) = IDFT ( [DFT (£} (n)) 1 Ix [DPT(£,°) (n)) 15! ). at (24)

DFT and IDFT are Discrete Fourier Transform and the Inverse
Discrete Fourier Transform respectively. Numeric values are
obtained using the Fast Fourier Transform (FFT) and the
Inverse Fast Fourier Transform (IFFT). In implementing the
analyses of a K point FFT (where K is an integer power of 2),
K is chosen such that K>ML/A+1l, and remaining samples of the

functions between M/A+1 and K are padded with zeros. Redefine

F M
£V (x Z+12n21
(1) Xix ( 1k) Ixu-(n-l).n A
£y, (m) = (25)
1 ML M
0 K—+12n> —+1
A A
and the other functions can be redefined similarly. The

probability of bit error is obtained by integrating equation

12




(14) numerically and substituting into equation (13) for

1=2,4,6,8. For L=1 (slow FH), the exact result is obtained as

o P/ 2k e P /(28
+ (1Y) ———— (26)

P(E/L=1) = y—
Y 2+£1(<1) 2+El((0)

b. Square-Law Detector

The 1linear combining square-law detector is
depicted in Figure 2. Assuming that a binary 1 is sent when
there is not interference, we obtain the sampled detector

outputs as

X1 = (@/28cosB; + n. )? + (a,/28sinB; + n, )?

(27)
2 2
X2k = (nCzk M nszk)
and when there is interference
X1 = (a/28cosb, + n, + 1. )? + (ay2Ssinb, + n, + i, )2

- ;o y2 . ya2

Xok = (nczk M l‘—'n) * (nszk + 1321)
(28)

All the variables are as defined for the envelope detector.
Using equation (8) and equation (9), we obtain the probability
density functions for x, and x, via a transformation of x=y?,
where x represents x, or x, and y stands for x, and x,, in

equations (8) and (9), respectively. Hence

13




o1 Xk,
£, (x,,) = = 1 T V2P i1k e -m;(z"i pk) X,, 20
X =TT TNy T T, (1eE) 1k

(29)

1 ~xy,/20%
£y () = =2 e/ %, 20

20%

(30)

The characteristic functions of the decision random

variables x,, and X, are

1k

Cx-.k

= f Frp (X1p) e dx;
- (D)

—px/ (Le8i) L —xp/ (202 (1+8,))

o1
{—g <1+£k) ©

Io( !!ZOk l!xlk} e-sxu]dxlk

g, (1+8,)

2

Substituting x,=u® and dx, =2udu into equation (31) and

1k

integrating, one cbtains

Cxu (s

-uzso___#__
- . 200, ﬁz
_ 1 e P (18 | o ( 20%(1 m) I, 192 ) u]du
0 ok(1+Ek) Pr(l+g,

“"

(32)
The result yields [Ref. 6]
Px 1
_ . 205(148,)0% o1
e/l 1 e SR8 202(1+8,)
X
* Oi(l*‘&k) 2 5+-_i.__
202(1*'{)() (33)

14




Define x,” as the sum of 1 interfered random variables
and x,'® as the sum of remaining L-1 random variables that are
not interfered, and c as an integer assuming a value of either

1l or L-1 for the superscripts (1) and (0) respectively. Then

£ (%) = €Yl (s) 19 for i=0,1 (34)
which is
Px C by ]
205 (1+E,)2 5’+—
. -px ©f (1+£;) 205 (1+Ey)
B (x) =9t 2o e — | )
0k (148 ¢ pefge L
\ 207 (1+E,)
Using [8 Campbell-Foster Pairs 650.0] we obtain
. ~cpp/ (1+E,)
f)é‘l) (Xl) = C‘le _ 1 — xl(C—l)/Z
2 2 of (1+8) (pgo) 2
(36)
V2P xCy Xy | _ -x,/203 (148,
X Ic_]_( o (1+E )l)e X1/20y k
k k
and
- P
- Pk ‘(T") *ax - Pr
° 2(s+—2‘5)

15




The characteristic function for the random variable X, which
is the sum of 1 interfered and L-1 noninterfered random

variables, is

/ 1 (L-1)
Co(s) - pi’ pi 1 1
% 2 2 (1 (@) (38)

1 (L-1)
(s+ Px ) (s+ Pk )
2 2

This can be separated as

C, (s) = An A1z + +———Al—1——
X, pf) pf)z PF)I
s
2 (S* 2 ) (“ 2 )
+ Az . A + + Az,1-1
(0) {0) \2 (o) \ (L-1)
Pk Pk Pk
S+
2 (s+ 2 ) (S+ 2
(39)
where
1 d(l-j) 1 ,
Alj = sl - IS]S.Z
—5) 1 (1-3) (z-1)
(=30t dstd (o0 (40
S+ (1)
2 ge-PE_
which yields
A = (-1)u-n| LI 2r7 1s7<1 1l #L and 1#0
1 1-7 (0) __ (1)) (L-7) ’
(Pk P )
(41)

16




—_—

1 4 te-1-3) 1

= 1<jsL-1
A3 % L5017 e wID NERY sJsL @)
(s+ 2 ) sl-ﬁ
A, is verified to be
, | L=9-11\ 2L-7 ,
A,y = (-L) (T S = . 1sjsL-1
Ayj (-1 \L-l-]) (pl((O)_p]((l))L_J J (43)

The probability density function for the decision variable x,
is obtained by taking the inverse Laplace transform of the

characteristic function C,,(s)

1 (1)1 .
£, = 5 L oyt (g (2073
=1 <

1-j
1 7Y e
(P G
. 1
= fpinz {0)\L-1 1{L-7-1
+ L (px”) (-1)
= 23 L-1-3j
y 1 X‘j—l -(pi¥x;) /2
(pi -ps") 7 (T
(44)
and when 1=L and 1=0
(1) L (1)
fx2 (Xz = oL p(kL 5 XL-:L e_‘pkl x)/2 1=L
(45)
(o) 1 .
Ly, (%) = ?f(%)ﬁ? x11 g (P /2 1=0

17




The probability of bit error is

PE) = X () ¥ a-n & ple/D) (46)
1=0
where
Ple/1) = [ £, (x) [ £ () dx, dx, (47)
0 X,
and
£ (x,) = £57 (%) * £x) (%) (48)

It is tedious to derive P(e/l) by using the exact solution for
equation (21) except for the cases 1=0 and 1=L;

hence,numerical analysis is preferred. As before,

£57(x,) = IDPT [ ( DFP(£;} (n)) x ( DFT (£ ()] .o (49)

is defined where

(1) - F M
£,7 (n) = £y (xiﬂx““pn.ﬁ ~+lzn21 (50)
and
—_ £ (x M2x. 20
£ (x) =4 7% (%) 1 (51)
: 0 otherwise

where M is the maximum of the reasonable limits of £,V (x,) or

£, (x%,) in order to have the areas under these probability

18




density functions as unity. The sampling distance is A. The
remaining part of the procedure is as explained previously for

the envelope detector. Also

P(E/L=1) = —Y __ /@t | (1o9) -/ 28l (52)
2+§" 2+8"

This result is the same as the one obtained for the envelope
linear combining detector.

When the signal 1is completely diffuse (Rayleigh
fading:pﬁ”*O) the probability density function for a single
hop is

B, x 1
£y (x,) = Be P where . S
Xy N1k B B 5 (012(+202) (53)

and the characteristic function for the random variable X, is

Cy (S) = By ' (_Bo Y where B =BL%, B,=p" (4)
% s+B, s+B, o"Fk + F17Fk

which yields

1 (-1)1-7pipL-! L-d-1 %I 1g B
f, (x,/1) = ° J- 1
x5/ Jz; (Bo-By) 7 ( 1-7 ) (7-1)!

+

V(-1 13%9'5'1( L-j—l) xj e P
J=1

(Bo-B,)t 7\ L-1-F] (F-1)!

fxfa-le‘lel ngf'_le_aoxl (55)

Ly (X /L) = —p— By (/1=0) = —7er—
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The probability density function for x, is found in a similar

manner
1 l-mp 1, L-1 m-1_ ~& X
1) (3 3 _m-1\ X, e 12
£y Xy 2: =~ (L m 1) 2
m= 1) -m l-m (m‘l) !
. L-1 l) al L- l( L—m—l) Xén le X,
e (ao—aﬂ L-1-m/ (m-1)!
L, L-1 a,x; '“oxz
arx; e “&Q
= f 1=0) = =2*“ ~
fxz(Xz/L) (L-1) 1 X, (Xz/ ) (L N
(56)
where
1 1
#o* %1 57)
20120)2 20(1)

After some algebra the conditional bit error probabilities

when 1=0 and when 1=L are found to be

L-knlL
_ _ 2L-k-2 o, Bo
ple/izo) = E( ) (B,+a,) 2ik1

(38)

L-1 L-kqL
k- a
Ple/L) = (2L k 2) 1 B3
2 L-1 (Bl"’“1) 2L-k-1
In general
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p(e/l):Zl: (‘”l'jﬁiﬁgl(L—j—l)i (-1) Ima] “(L-m-l)

7 (Bo-B) ™ 1-7 lad (agma)tm | I-m

t+1 (‘11‘*[3 ) (m+j-t-1)

BT ey

. zl: 1)1—3[; B (L—j_l)L-l (- l)lal L- I(L—m—l)

J=1 p )L 1 l_-j m=1 (ao-al)’""" 1-1

IS 1(m —t—Z) 1
=0 Jj-1 «f (B, +a ) mIoEn
. Bipg (L j 1)21-\ (=3 ag L-m-l)
51 (BomB) =i\ I-1 75 (ao-al)“‘"( 1-m
y ""l(m+j-t—2> 1 P Bipg! (L—j—l)
£=0 j_l af*l(ﬁo"'al)m'j-t—lj J=1 (ﬁo—Bl)L—l 1-1

(59)

y Lz_f aje;? L-m-1\x« m+j-t-2 1
_ L—m( 1-1 )E( '_1 t+1 mej-t-1
m1 (e -a,) £=0 J o, (Bora,)™d

2. Self-Normalization Receivers

a. Envelope Detector

The self-normalization combining scheme [Ref. 1] is
a method of obtaining the predecision variables by normalizing

the outputs of the envelope detectors of Fig. 1 with the sum
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of the detector outputs. The receiver is depicted in Fig. 3.

Equations (11) and (8) are revisited

. X, . —Az2 2g,.0° —x® 2, .2
er(Xlk) - 1k _ e Als/(20%S+0}) 4 x5/ 12(20%403) ) I, \/2.'5’.212 x
l 250%+0} 280%+03%
(60)
X 2
- 2k ~Xy3/ 20
fX“(XZK) = —oé— e "k E XZkZO
. k
We define 25 and Vi as
X
2 = —){—i:—{—— Oszlk.<.1
1k 2k (61)
Vik = Xix*Xok Ogvyy <
The Jacobian of the transformation is
0z, 0z,
ox ox.
1k 2k
J = = 1 (82)
vy, ALY Vik
0x, 00X,

Equation (61) can be inverted to yield x,=v, .z, and x,=v, (1~
z,,) . Since x, and x,, are independent random variables, their

joint probability density function is

Fxxp (Kik 0 Xo) = B (X)) x £y (X)) (63)

£ (x x.,) = 2k Xox -a'S/B}  -xih/28} g-xh/20k | Y2SA
Xlk,xzk 1k ¢ 2k 2n2 0 2 1k
205B% Bx

where B,2=0,2+25¢%. Hence

frvi (2 Vi) =1 J 1. fxl,,,x,,(vu' Zyx o Vige (1-24,)) (64)

The probability density function for 2z, is now obtained as
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£, (Zy)) = f £1,. v, (Zop Vi) - AV (&)

Substituting equation (63) into equation (65), we get

e -A%s/B3

20%p%

2 2
Zik , (1-Z1x) ) v3 (

zlk ( Zlk)

o 1
'7( z 2 V25Az
x f z,(1-2,,) Vi e Pi % Iy .__2*1’5
0

Vil dvig
k

(66)

Making the necessary substitutions into the equation in Ref.

6 on page 394

- - r Ji+nq
e et g o (n» T3 (67
-[Jo(at:) e £r-l dt mX; Ty

where I (.) 1is the Gamma function and J (.) is the Bessel
function of the first kind of order zero, we can evaluate

equation (66). Since I'(m)=(m~-1)! for m an integer

-A3s/pi
lek(zlk) = 2.2 Zlk(l—zlk)
OxPx
XX": 2 (m+1) [ saz\)" Zig (€8)
m=0 m! B; 2 2 n-2
Z1k | (1-25,)
Bi ok

which simplifies into
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o~A?S/8}

(z,,) = =——— (1-2,,)
2, \Zax 1k
o 0Bk

Zlk 2
2
21k+ (1-2z,)°2
2 2
Bx Ok

o SA? z2 n
< E m+1 1k

m!
m=0 2 2
B2 Zik (1-2,,)
2 2
k O

(69)

Using

2 y™"=e¥(y+l) (70)

and replacing for y

SAzsz

B lek+ (1-z,,)2 (1)
B ok

we obtain the pdf of 2z, as

y:‘:

-5A%/B% z,,(1-2,,)
lek(zlk) = 28 1k 1k

2p2 2
oiBx (zlzk . (1‘211:)2]

. Bk ok

2
SAZz{,

F re 2
2 B‘ Zyy . L Zy,)
SA?z{, '( B2 o2
x [1 + x e 0< z,,<1

B4 212k + (1"21)()2
2 2
k Ok

(72)
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Substituting £ =20%/0,2, p,=A%/0,%, and S=1 in equation (72), we

get
] 2 e 7 1-2,))
7,021 = — " 3
(26 + (1-20% (1+Ep)
2 Pi zy ) (73)
w1 1+ PxZik w e \ (140 (2 +(1-2107 (1+8p)
(1""51()[2121( +(1‘21k)2 (1+Ek)]
Recalling equation (13) for probability of bit error
L I ,
P(E) = ( ) I (1-y)t! p(e/1) (78)
l}; 7)Y Y /

and using

L
Z (Z1x+25p) = 2y+2, = L
=0 (75)

P(e/l1) = P( z,>z, /1)
we get the partial probability of bit error, when 1 of L chips
contain interference noise energy, as

P(e/1) = P(21<-§/1) (76)

The results for probability bit error are obtained
numerically in a similar fashion to that previously explained.
The probability of bit error for L=1 is found to be the same

as in equation (26).
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b. Square-Law Detector

The square-law self-normalization detector is
depicted in Figure 4. P(E) is derived for 1=2,4,6,8 using

the equation from reference 1

£ o(z) = P2y + (1+&,) [1+&,(1-2,,)] o Pr(1-210 / 18, (1-2,) ] -
Zix 1k [1 +Ek (1 -zlk) ]3

in the method previously explained. For L=1, P(E) is derived
analytically, and the same result as in equation (26) is
obtained.

3. Noise~-Normalization Combining Receivers

a. Envelope Detector

The noise-normalization combining scheme normalizes
the outputs of the envelope detectors of Figure 1 with the
noise power (square-rooted) obtained from the output of the
noise only channel (noise power prediction channel) at the

sampling instants to form the predecision variables z, and z,

1k k

(depicted in Figure 5). The probability density functions for
2, and z, can be derived applying a linear transformation to
the pdfs of the linear combining detectors x,, and x,,, such as

207X /0, 257X, /0,. The results for £, (24) and £,(25) yield

-py/ (1+E,) 2 >

_ e -2/ [2(14€,)] P

£, (2u) = ey w e ’ ID(E Zu] Zyx 20
k

2
= ~Z3/2
£7,(2Za) = 25 €
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The probability of bit error is obtained with a method
similar to that used in the linear combining envelope detector
case. An exact result is derived for the probability of bit
error of a single hop per bit (slow FH). The result is the
same as in the equation (26).

b. Sguares-Law Detector

The square-law noise-normalization detector is depicted in
Figure 6. The decision is made by a comparison circuit which
accepts as inputs the sum of the random variables that are
obtained by normalizing the outputs of the detectors with the
output of the noise power measurement channel. Assuming a
binary one is sent, we get the pdfs for single hop random

variables [Ref. 3]

(g s . 2p,2
£, (z,) = 1 e (F*2p) /(2(2480] £ V4PiZ1k Zzy, 20
1k 2(1+Ek) 1+€k

()

e -zﬂk/z

£r,(Z2) = —~— Z,,20

The pdfs for the random variables z,'" and z,”, where (1) and
(0) represent the portion having interference and the portion

not having interference, are

(i) _leg-1)/2

(1), (1) k 21k (85 (20 s2¢,p4™)] (1) (1), (1)
' (zy7) = e 7 fe T 2 2¢;
= (2c;ppth) (et /2 e(2Be 205067 27
(80)
z,/2)
fz (22) - ( 2/ ) e (2,/2)
2 2(L-1)!
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where ¢, is 1 if i=1 or L-1 if i=0, and

(1) _ 1

L 2(1+££n) (81)

The probability of bit error for 1=2,4,6,8 is obtained in
a similar fashion as for the previous cases, and P(E/L=1) is
found to be the same as in the equation (26).

When the signal is completely diffuse (p,’-0), and the
characteristic function from reference 3, replacing ﬁf=ﬁf1%

and B=8,‘?, is

¢, (s/1) =( b, )l( i )H @)

S+B1 S+Bo

This can be inverted to yield

1 1-jpipl-1 . j-1_ -P,z,
(-1) BB L-7-1\ 21 e
£, (z,/1) = . Pl P
=2/ ?—"; (B,-B,) L ( 1-3 ) (7-1)!
L-1 -1plpl-1 $-1_ Bz ()
+ ¥ (-1) "Bibs (L'j’l Zi e " 1yIv0
& (B,-ByET \L-1-57) (F-1)!
L
fa(zl/L)z-ng%TT zltehan fq(zi/1=o)=_rzg{)! zhlebon (3
and
L-1
Z2 -2;/2
f,(z,)) = ——=———e2 (85)
z 1% 2L(L-1) 1
Now
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Ple/l1) = ff (z,) dz, ff (z,) dz, (86)

2

Since
feavy Ny = e E (-1) ky¥* N! for N is integer (87)
= ak’l (N-k) !
then
/2 gy zf 1ok ]
pPle/l) £, (z,) 5 dz (88)
/ f ) ,(Z; 2Lk (p-k-1) 1| " ?

Replacing f,,(2,) in the equation above and solving for l=L, we
get

(89)

!

- e'(pl‘—;)zlzl-l-k
P = 1
(e/L) (L-1) ! 1)' {E 2Lk1(r_k-1)! dz,

k=0

B{- L-1 2L-k-2 (_1) (2L—k—2) |22L-k-t-2
= (L-1)! e 2L- k‘l(L k-1)! t=0 (p -— )tol(ZL k-t-2)1

Jlze0

The upper limit of the function yields 0, while the lower

limit has value only at t=2L-k-2; hence,

L-1
2L-k-2 (2L) L
P(e/L) = %
*/ Z; ( L-1 ) (2B, +1)2Lk1 (90)
fimilarly
Ple/1=0) = J° (2L—k—z) (2p,) ¢ o
k=0 L-1 (2 Bl"’l) 2L-k-1
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finally

P(e/l)=§l_: (-1)1'jﬁfﬁﬁ’l(L 5- 1)“(1 ~k+j- 2) 1
“ (ﬁo_ﬁl) 1-3 perd 21-1-k(B1+%)L—k»j
(%2)
. gf (‘1)lﬁiﬁgd( -Jj- l)L'l(L—k+j—2) 1
j=1 (Bo_Bl)L'j L-3-1] &3 J-1

21,11(({;+ )Lk’)l
2

C. SYSTEM PERFORMANCES UNDER MULTIPATH FADING AND THERMAL

NOISE (NEGLECTING THE EFFECT OF PARTIAL-BAND INTERFERENCE)
1. Envelope Detector

An analysis for envelope detector for three kinds of
receivers previously discussed is similar to that used in the
partial-band interference analysis. In the absence of
partial-band interference, the performance of a noise-
normalization detector 1is easily proven egqual to the
performance of the linear combining version of the same

detector. Hence

X
ll
™
X
g
X
!
™
X

k—

(93)
L L
X1k X,
Al amc ) ot
k=1 k=1 k k
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Similarly z,=x,/0,, and for linear combining

PE) = [ £,(x) .dx, [ £ (x) .dx, (94)
0 Xy
is equal to
P(E) = [ £,42) .dz, [ £;,(z,) .dz (%)
0 z,

if the substitutions »,=0,2z,, dx,=o0,.dz, and x,=0,2,, dx,=0,.dz,
are made, where .- recall that f£, (z,)dz,;=f,,(0,.2,).dx, and
f,.(2z,)dz,=f,,(0,. ,).dx, for the linear transformation. This
proof can r. applied to wideband (uniform) interference. The
probability of bit error for L=1 can be extracted from that of

with- interference results, and it is

( / ) e"Pk/(z"‘Ek)
P(E/L=1) = ———— 96
T (%6)

2. Square-Law Detector

a. Self-Normalization Combining

Results are obtained numerically except for L=1.

P(E/L~1) is found the same as for equation (96).
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b. Noise-Normalization Combining

The probability density function for x, is derived

by replacing c=L in equation (80) to obtain

(L-1)/2

X - +
£ (%) = (22p3(U4”2 e Bxx2led) 1 (2B, [2Tp,X,) x, 20 (97)
k

The pdf for x, is the same as in equation (38) where

B,=1/2(1+f,), and the probability of bit error is

pE) = [ £ (x) [f £ (x) dx, ] .dx (%8)
0 X3
Substituting equation (80) and equation (97) into equation

(98) and integrating the inner integral, we get

Bk e 28l

P(E) = 2L(2ka) (L-1)/2

(%9)

o (Bera)x,

L-1
T e z - _i-
% E 21[ RSN xl(z. 1) /2 xlu.z 1) IL-1(Zp Q——)kaxl dx,
A !

i=0

The result of the integration is an infinite sum and numeric
integration is preferred instead. For slow FH (L=1), the
result is obtained from previous analysis and found to be the

same as in equation (96).
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v

c. Linear Combining

The probability density function for x, is obtained

from equation (36) by substituting c=L

£ (x ) - e-LPg/(l’{k) 1 X(L—l)/z
X (Le1) /2 4L%1 ( ) (£-1)/2 1
2 Ok (1+Ek) pkL

x I, piLX, o X/207 (10 %,20
Pr(1+&,)

(100)

The pdf for x, is derived using the characteristic function

method

L
£y (%) = &Y'l{ (&E{ —pz—k . e”“"’/z}) } when A2%=1 (101)

which yields
)L (102)

which reduces to

Y - de /2
_ k N I%) 103
Iy (%) = (—2 ] 7T ¢ X,20 (103)

Substituting equation (102) and equation (103) into the well
known equation for the probability of bit error for

noncoherent BFSK, we get

33




P(E) = [ £,(x) ([ £(x,) dx,] dx,
0

X3
Evaluation of the inner integral yields

e ~Lpy/ (1+8y)

p(E) = L+l
2L /2g7 (1+Ek) (p,L) (L-1)/2

(104)

Wi

2k k' pk(1+Ek)

=
)
(=]

Xy 1
IR L yrur !{2
j‘ e LV/2 kg ( pi(1 Ek)) IL-l( P Ly ) dx,

Replacing >g=ofz1 and dx1:=ok2dz1 in equation (104), we obtain
equation (99). As a result, we see that noise-normalization
combining for the square-law detector detection procedure has
no performance improvement as compared to linear combining in

the absence of partial-band interference or jamming. P(E/L=1)

is found to be the same as in the previous cases.

D. PERFORMANCE ANALYSIS IN THE ABSENCE OF THERMAL NOISE

The neglect of thermal noise (N~0) 1is a basic
simplifying assumption in work regarding partial-band
interference and fading. This analysis is implemented for the
nonlinear combining detectors; it is found impractical to
obtain accurate results for the linear combining detectors

when thermal noise is neglected.
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1. Envelope Detector

a. Self-Normalization Combining

Recall equation (72) for the pdf of a single hop

27 0 (14E )z, (1-2,)

£, (2y) =
* [lek*’(l’zlk)z(l"'gk)]z
2 ( szfk (105)
11+ . PrZik x o' (1+&) {22+ (1-2,,) 2 (1485} ]
(l+€k) [Zlk+(1_zlk)2(1+Ek)

With no thermal noise, and for the sake of simplicity letting
B=1,we have

0 when the hop is free of interference
Ok = NI (1%)

—Y— when the hop has interference
If the random variable 2z, is not contaminated with
interference, the parameters p, and Ek in the probability
density function of the particular random variable go to

infinity in the limit. Define the condition set C as

(<) Satad

c- ol (207)

(1-2y) (1+8,,) ~e

Zx~1

where the third condition can take place if and only if the
order of Eu is greater than the order of 1/(1-z2z,,) as z,,

approaches to 1. By a simple limit operation
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limg £, (2),) ~ee (108)

We now redefine the pdf for z, under the declared condition

as

£, (z,) = 8(1-2;) (109)

where 6(.) is delta function. Recall that the probability
density function of the sum of statistically independent
random variables is the convolution of the probability density
functions of the random variables included in the sum. The
convolution operation with a delta function is implemented
simply by shifting the function involved on the horizontal
axis as much as the distance of the delta function from the
origin. Every single cell in the combination that does not
have interference shifts the resultant pdf by one unit to the
right. The conditional probability of bit error when 1 of L

hops have interference power is thus

L/2
Ple/1) = f [f25icz, * 8¢z~ (L-1))] . dz, (110)
0
Hence
L/2
sl
P(e/1) = KL fz,(2,) .dz, when 1>L/2 (111)

0 when 1<L/2

and the probability of bit error becomes
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L
2: (ﬁ)P(e/l) yl(1-y) &0 L is even
1-_1'01

2

P(E) = 4 (112)

L
Y (?)P(e/l) yi (1-y) &P L is odd

Numerical results are obtained with the method previously
explained. For single hop per bit FH, the probability of bit

error is obtained as

( / ) _p‘(tl)/(z‘zil))
P(E/L=1) =y = —— (113)
2+E"

b. Noise Normalization Combining

Recall equation (78) for envelope detector noise-
normalization combining pdf for signal-containing random

variable Z,

-px/ {1+8,) 2 =
_ € -2/ [2(1+8,)] v<Px 114
£,, 02,0 T, z, e’ Io( 17E, zlk) 2,20 (114)

and z, from equation (78)

2
£,,(20) = Zy e/ z .20 (115)

If we replace B=1 for simplicity and if N, approaches 0, then

£, and p, approach to infinity, and

0 without interference

Op = N R . (116)
k -1 with interference
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We separate equation (114) into 3 parts

Id[2 Px lek
£, (Zy) = g P/ (%) X 21k x N 18 N 20148y (117)

= g _ 1k
1x 1+Ek lek/[Z(l‘Ek)]

e
(1) (2) (3)

Defining
2
X = .__?_1.15.— a = pk (11'8)
2(1+&,) 1+§,
and recalling
- 2m o m = m
I (2a/x) =)y, 22X ex=) X (119)
m=0 (m!) meo M-

we find that the first part assumes a finite value as 0¢,%-~0.
The order of I_(2a/x) is equal to the order of e*, so the third
part may also converge as well. The second part is infinite

as z,~». Defining the condition set C as

2
Pix~0
c=9, (120)
Pkl
so lim _ £, (2, )~®, we have
£ (z,) = lim,.. & (M-z,,) (121)

which is an impulse at the infinity. The probability density

function for the random variable 2y, is finite for all z,,.
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The convolution operation of a function with an impulse at the
infinity yields zero for finite values of 2, . Therefore, for
every bit including even a single chip that is not
contaminated by the interference, the conditional probability
of bit error is zero. It is only necessary to evaluate

P(e/1=L) and
P(E) = ytP(e/1=L) (122)

The results are obtained numerically except for L=1, which is
found to be the same as in the self-normalization case.

2. Square-Law Detector

a. Self-Normalization Combining

Recall equation (77). Separating it into two
parts, we have
(zlk) - PrZipt (1+Ek) [1+Ek(1—21k) ) x e"’k(l'zu)/ll’fk(l‘zu)]

t [1+E(1-2,,)]3 (123)
(1) (2)

£,

and the condition set C is defined as

Px~®
£
c=4 °F (124)
Z 1
Ek(l_zlk) -A
where A stands for any finite real value. Under this

condition set the limit
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lime £, (2),) == (125)

The second part is finite and nonzero, and the first part goes
to infinity (the denominator is finite, the numerator
approaches infinity in the 1limit); hence the probability
density function for a single chip which does not include

interference is

£:5(z) = 8(1-z) (126)

k

The performance analysis is carried out numerically, and

results for equation (112) are obtained using the equation

(123).

b. Noise-Normalization Combining

Equation (80)

‘8“/2

2

£, (21 = =

Z,x20 (127)

gives a finite result for all finite values of 2, . Separating

equation (81) into three parts and rewriting it for c¢

noninterfered hops, we have

(c-1)/2
(0) -cpsP /11481 2
le (21) =g Pk &x x

cle-1)/2p(er1) /2 (14E(D) (p L) te-11/2

() I ee— (128)
1,2 | Pk i
c-1 (0) (0)
y N 148 N 2(2+8")
ez,/2(1¢££°’
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We derive a condition set C as

(04°)2-0]
(0)
Px —>
(0) .0
Kk
20 oo
Defining
z
x = Ty a= (130
2 (1+Ek0 )

and recalling the series expansion for the modified Bessel
function with an integer order (c-1) and for the exponential

function

aZm*c-1x2mxc-1 2 X2m
I.,(2ax) = . ex = 131
et ) g; m! (m+c-1)! 2; m! (B0

we see that the 1limit of the first part of equation (129)
under the condition set C has a finite nonzero value. In
addition the third part, which has a form of Icq(Zax)/(e“),
does not converge (the order of I_,(.) is equal to or greater
than the order of e*?; so if c22 this may happen). Finally,

the second part may approach infinity depending on the order

of z, with respect to 1/0,>. Hence, lim £, (2z,)»», and

£, (2) =y..8(M-z) for c=L-122 (132)

Rewriting this equation, we get




£50(z) = £.5(z) * £5°) (z,) when c=2 (133)

This is simply a two-foid convolution (auto-convoiution) of

fukw)(z1),and equation (132) is valid if and only if

£52 L (2y) =n 8 (-%!—21) is true (134)

2

Obviously, equation (132) 1is valid not only for c22 but also
for c=1, and P(E)=y'P(e/1=L) can be derived from equation (99)

as

yigVe ~28 e L1 - -6z,

P{E) = 2L(2Lp(1) (L-1)/2 ZO -!: (L- i-1)!

x[ (L- 1)/221@11) I, 1( Bl((l)m] dz,

Results are obtained numerically by evaluating equation (134)

(135)

when L>1. For L=1, numerical results can be found with

equation (113).
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IV. NUMERICAL RESULTS

Bit error probabilities for worst case interference ratios
are obtained versus bit energy-to-interference density with
the following parameters: a) detector type, b) direct-to-
diffuse signal ratios (DD=A%/20%), and c) bit energy-to-noise
power spectral density ratios (E,/N,) . These results are shown
in Figures 7 through 62. 1In the absence of interference, the
results shown in Figures 63 through 82 are obtained. They
illustrate BER as a function of E/N, with the following
parameters: a) detector type, b) direct-to-diffuse signal
ratios. Figures 83-86 are an illustration of the performance
of the various nonlinear combining receivers versus bit
energy-to-interference power spectral density (E,/N;) ratios
when there is no thermal noise contamination (N-0) and DD=10
(2 moderate fading effect).

Worst case y values are obtained by inspection, and it can
be seen that for a particular detector (and normalization)
type the worst case y's are functions of the parameters: E /N,
E/N,, L and DD. For the linear combining analyses, we see
that all of the parameters mentioned effect the worst case ¥
(v,) in an inverse manner. For nonlinear combining, y 6 is
directly proportional to L, while the effect of the other
parameters investigated on y 2 is the same as for linear

combining. The relationship between y_, and A%/2¢? is very
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loose. For strong fading, detector performance is not

sensitive to y [reference 1].

A. PERFORMANCE ANALYSIS FOR WORST CASE PARTIAL-BAND

INTERFERENCE

1. Linear Combining Detectors

(1) E /N =13,35 dB and DD=0.01 (Figures 7 and 8)

There is not a visible difference between envelope and
square~law detectors. Both have a great amount of diversity
improvement for E_ /N;25 dB. The optimum value of L is greater
than 4 for the envelope detector with E_ /N;>10 dB and the
square~law detector for E/N,>15 db. The square-law detector
has a slightly better performance for these optimum L values
when E./N,>30 Db.

(2) E/N=13.35 Db and DD=1 (Figures 9 and 10)

Both detectors show a diversity improvement. The optimum
number of chips per bit is greater than 4 for the envelope
detector with E /N,212 dB and for the square-law detector with
E,/N,>17 dB. The square-law detector has a slightly better
performance.

(3) EL(N;=13.35 dB and DD=10 (Fiqures 11 and 12)

The region of diversity improvement begins for the
envelope detector with E/N,>9 dB and for the square-law

detector with E /N,>20 dB. The optimum L=4 for the envelope
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detector with E /N,>15 dB, while the optimum L never exceeds
2 for the square-law detector. Performance of the envelope
detector is better than the square-law detector for 25
dB>E /N, >7 dB and equal for E /N,>25 dB.
(4) EL(N_ dB and DD=1000 (Figqures 13 and 14 )

The square-law detector does not exhibit diversity
improvement in this case, but the envelope detector does. The
performance of the envelope detector is much better than the
performance of the square-law detector. Simulations with
greater A?/20? such as 10° for some values of E/N, show that
there is a diversity improvement for the envelope detector not
only versus fading but also versus partial-band interference.
There is not any difference between the values obtained for
A%/20%=1000 and 10° so A?/202=1000 represents the no fading

condition (Similarly A%/20%2=0.01 represents Rayleigh fading).

(5) E/ =16 dB and DD=0.01 (Figures 15 and 16)

Both detectors show a diversity improvement. For the
optimum values of L, the performance of the envelope detector
is better than that of the square-law detector up to E/N,=35
dB. Comparing Figures 15 and 16 to Figures 63 and 64 (the
latter two figures illustrate performance when there is no
partial-band interference for the same values of E /N  and DD),
we see that both detectors (linear combining) have almost the
same diversity improvement versus fading, but the envelope

detector is better versus partial-band interference.
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(6) E /N =16 dB and DD=1 (Figures 17 and 18)

Both detectors show diversity improvement, but the

performance of envelope detector is superior.

(7) E /N =16 dB and DD=10 (Fiqures 19 and 20)
Diversity improvement 1is achieved by the envelope
detector, but not by the square-law detector up to E, /N, >27 dB.
The envelope detector performance is better.
(8) E /N =16 dB and DD=1000 (Figqures 21 and 22)
The envelope detector show diversity improvement up to 3
dB, but no diversity improvement is reached by the square-law
detector. The envelope detector performance is better.
12l____EyQgEl§_Q§_QBQ_2QElQ_iﬁlg!£§§_zl_éng_lil
The envelope detector shows a diversity improvement, but
the square-law detector does not up to E/N;>33 dB. Note that
the diversity improvement region for this particular value of
A%2/20% is decreasing with increasing E /N, for the square-law
detector. If thermal noise is negligible, then partial-band
interfererce has a more significant impact on system
performance than fading, and no diversity improvement is
obtained with the square-law detector.
(10) EL[N:=18 dB and DD=100 (Fiqures 25 and 26)
A diversity improvement is obtained for the envelope
detector up to 3 dB but there is no diversity improvement for
the square-law detector. The envelope detector is 3 dB (or as

much as diversity improvement) better in performance. For a
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particular value of L, it is much better than 3 db because of
the diversity degradation for the square-law detector.

2. Self-Normalization Combining Detectors

(1) E/N=13.35 dB and DD=0.01 (Fiqures 27 and

28)
The performances of both of the detectors are almost the
same. Some diversity improvement is obtained, but performance
degradation is as much as 4 dB as compared to linear combining
detectors.
iZl____EyQ%Ell;lé_QE_éBQ_DDEl_iEiggzgéLzﬁ_éﬂg_égl
The performances are the same for both of the self-
normalization detectors. These detectors show a diversity
improvement, but performance is degraded up to 3.5 dB as
compared to the linear combining detectors.
(3) ELZN:=13.35 dB and DD=10 (Figqures 31 and 32)
The performances of both of detectors are much alike.
Some diversity improvement for E_/N,>10 db is obtained. Some
performance improvement is achieved by the square-law detector
for 12 db<E,/N <28 dB, but this improvement is because of the
deficiency in the performance of the square-law linear
combining detector. Both of the detectors suffer a
performance degradation for E_ /N;>28 db, and this degradation
with respect to the linear combining envelope detector is 3 dB

at E,/N,=40 dB.
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(4) Egﬂ{fl3.35 dB DD=1000 (Figqures .. aiid 34)

The performances of both of the detectors are the same.
Diversity improvement is obtained for 10 <L.c /N <38 dB.
Performance improvement for both of the detectors with respect

to the linear combining envelope detector is about 5 dB.

(5) E /N =16 dB and DD=0.01/1 (Figqures 35, 36 and
37, 38
The performances of both of the detectors are the same,

with a diversity improvement but not a performance improvement

(with respect to the linear combining envelope detector).

6 E /N =16 _dB DD=10 (Figures 39 and 40)

Both of the detectors have the same performance.
Diversity improvement and performance improvement are obtained
for E/N,>10 dB. The maximum performance improvement with

respect to the envelope linear combining detector is 7 dB.

{7) E /N =16 dB DD=1000 (Fiqures 41 and 42)
Performance of the both detectors is the same, a diversity

and a performance improvement is obtained up to 20 dB.

(8) E /N =18 dB DD=1000 (Figures 43 and 44)
The detector performances are the same. Diversity

improvement and performance improvement (up to 15 dB) are

obtained.
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3. Noise-Normalization Combining Detectors

(1) E /N =13.35 dB DD=0.01/1 (Figures 45, 46 and
47 48)

The performances of the two detectors are the same.
Diversity improvement but no performance improvement is
obtained.

{(2) E_(N_=13.35 dB DD=10/1000 (Figures 49, 50 and
51, 52)

The detector performances are much alike. Diversity and
performance improvement relative to the linear combining and
the self-normalization combining detectors are obtained and
maximized for moderate values of E /N,.

(3) Ei(N==16 dB_DD=0.01/1 (Figqures 53, 54 and
55, 56

The performances of the detectors are similar. A visible

performance improvement is not obtained.
(4) E_| [N_=16 dB DD=10 and_ 1000 (Figures 57, 58
and 59,60)
Optimum L is 4 or at most 6. The performances of the
detectors are similar. Both have diversity and performance
improvement.

(5) E/N=18 dB DD=10 (Fiqures 61 and 62)

Performance and diversity improvement are obtained.
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B. COMPARISION OF THE PERFORMANCES IN THE ABSENCE OF PARTIAL
=-BAND INTERFERENCE

Linear and noise-normalization combining detectors are
analytically shown to have the same performance when the
effect of the partial-band interference is eliminated. Self-
normalization combining detectors have a very poor performance
in this case. Even though they show a diversity improvement
(gained versus fading), noncoherent combining losses are much
more than for the linear and the noise-normalization combining
detectors. All the detectors show a diversity imrrovement for
moderate values of direct-to-diffuse signal ratios, but for
the self-normalization combining detectors the improvement
region begins at greater values of E//N_. There 1is not a
visible performance difference between the envelope and the
square-law self-normalization combining detectors. By
comparing the performances of the envelope and the square-law
linear (also noise-normalization) combining detectors, one can
conclude that for the systems suffering from fading the
square-law detector performs slightly better. For no or

moderate amounts of fading, their performances are the same.

C. PERFORMANCES OF THE NONLINEAR DETECTORS UNDER NO THERMAL
NOISE

The nonlinear combining receivers are analyzed for
A%/20%=10. The performances of both detectors for self-

normalization combining (Figures 81 and 82) are found to be
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the same. Diversity improvement is obtained for E /N,>7 dB.
The self-normalization receivers show a visible performance
degradation regarding as compared to the noise-normalization
combining detectors (comparing Figures 81 and 82 with 79 and
80) .

Performances of the two detectors for noise-normalization
combining are compared in Figures 81 and 82 . No visible
difference is found. Both have diversity improvement for

Evﬂh>7 dB.
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V. CONCLUSION

The 1linear combining receiver implemented with the
envelope detector is seen to have a diversity improvement both
versus fading and partial-band interference, while the linear
combining square-law detector has a diversity improvement
versus only fading. Performance differences are also
emphasized by the decreasing effect of thermal noise. Under
no interference or wideband (uniform) interference conditions,
the performances of the two linear combining detectors are
found to be the same versus fading.

Self-normalization combining receivers implemented with
envelope and square-law detectors are seen to have the same
performance. They have diversity and performance improvement
compared to the linear combining receivers versus only
partial-band interference. They are very sensitive to fading
and thermal noise. Self-normalization can be a gocd choice
for down-link communication under good weather conditions and
partial-band interference.

The square-law and envelope detectors implemented with the
noise-normalization combining scheme do not differ in
performance. They have the best performance. Their
performances approach the linear combining receivers under

wideband or no interference conditions. When the signal is
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completely diffuse there is not any performance improvement
for the noise-normalization combining receivers with respect
to a linear combining receiver implemented with an envelope
detector.

For slow frequency hopping, all the possible detector and
combining type combinations that are inspected have the same

performance.
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PROBABILITY OF BIT ERROR
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Figure 7. Envelope Detector Linear Combining: Worst case

performance of the linear combining envelope detector

receiver with diversity combining, partial-band

interference, and thermal noise in a fading channel for a

diffuse signal (A?/20%°=0.01) and E_/N_=13.35 dB.
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PROBABILITY OF BIT ERROR
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Figure 8. Square-Law Detector Linear Combining: Worst case
performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

diffuse signal (A%/20%=0.01) and E,/N,=13.35 dB.
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Figure 9. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
signal with equal direct and diffuse components (A%/20°=1)

and E/N_=13.35 dB.
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PROBABILITY OF BIT ERROR
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Figure 10. Square-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
signal with equal direct and diffuse components (A?/202=l)

and Eyﬂ%=13.35 dB.
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Figure 11. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
relatively strong direct signal component (A%/20°=10) and

E,/N,=13.35 dB.
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Figure 13. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector

‘ receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
strong direct signal component (A%?/2¢2=1000) and E,/N,=13.35

dB.
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Figure 14. Ssquare-Law Detector Linear Combining: Worst

case performance of the linear combining square-law detector

receiver with diversity combining, partial-band

interference, and thermal noise in a fading channel for a

strong direct signal component (A?/202=1000) and E /N =13.35
dB.
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Envelope Detector Linear Combining:

performance of the linear cnmbining envelope detector

receiver with diversity combining, partial-band

interference, and thermal noise in a fading channel for a

diffuse signal (A?/20%=0.01) and E,/N =16 dB.
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Figure 16. Square-Law Detector Linear combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

diffuse signal (a%/20%=0.01) and E,/N=16 dB.

69




PROBABILITY OF BIT ERROR

10° - . ‘ —

: -
F 7
{ \\ Eb/MNo=16 db, DD=1 |
T~ |
\\\
10tk ’ ]
t ]
T =
h .
: =
L N\, ]
N,
n? e ]
% e i
PE L amaime e T

1l L Letsolidhine e i
= T e 3
=2 L=4 L=6__ 1=8°% :
\ i

104 N . N : - y 5
0 s 10 18 20 25 30 3 i

Eb/Ni db

Figure 17. Envelope Detector Linear Combining: Worst case

performance of the linear combining envelope detector

receiver with diversity combining, partial-band

interference, and thermal noise in a
signal with equal direct and diffuse

and ED/N0=16 dB.
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Figure 18. Square-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
signal with equal direct and diffuse components (A%/20%=1)

and E /N, =16 dB.
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Figure 19. Envelope Detector lLinear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

relatively strong direct signal component and (A%/20%=10)

E /N =16 dB.
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Figure 20. Square-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
relatively strong direct signal component (a%/20%=10) and

E,/N,=16 dB.
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Figure 21. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

strong direct signal component (A?/20%=1000) and E,/N,=16 dB.
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Figure 22, Square-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

strong direct signal component (A?/20°=1000) and E,/N.=16 dB.
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Figure 23. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
relatively strong direct signal component (A%/20%=10) and

E,/N =18 dB.
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Figure 24. Square-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a
relatively strong direct signal component (A%/20%=10) and

E, /N =18 dB.
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Figure 25. Envelope Detector Linear Combining: Worst case
performance of the linear combining envelope detector
receiver with diversity combining, partial-tkand
interference, and thermal noise in a fading channel for a

strong direct signal component (A?/202=100) and E /N =18 dB.
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Figure 26. S8quare-Law Detector Linear Combining: Worst
case performance of the linear combining square-law detector
receiver with diversity combining, partial-band
interference, and thermal noise in a fading channel for a

strong direct signal component (A?/202=100) and E,/N =18 dB.

79




PROBABILITY OF BIT ERROR

10') | e T T T T

L' Eb/No=13.35 db, DD=0.0{ . 7
N "5:"1‘31- ]
; \\\\ . ) -1
( \\\ s i
100 - U
- i \~ .
~.
I € T SlTer el
b L=1 solid hne ""”-~~~"»-'f-:J.’.I-_'S_Z.‘.'.Z.'.'.Z.'.'.If.'.'.(.’.I.'..I.'.'.Z.'.'.Z.'f,.“
! L=2 L=4 .. 1=6__ L=8°°
102 |- " ¢ | 1 1 : (
) 5 10 15 20 25 30 35 40
Eb/Ni db

Figure 27. Envelope Detector self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a diffuse signal (A%?/20°=0.01) and E. /N =13.35

dB.
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Figure 28. Square-Law Detector gself-Normalization
combining: Worst case performance of the self-normalization
combining square-law detector receiver with diversity
combining, partial-band interfeience, and thermal aoise in a
fading channel for a diffuse signal (A%/20°=0.01) and

E/N=13.35 dB.
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Figure 29. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a signal with equal direct and diffuse

components (A%/20%=1) and E, /N =13.35 dB.
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Figure 30. Square-Law Detector Self-Normalization
Combining: Worst case performance of the self-normalization
combining square-law detector receiver with diversity
combining, partial-band interference, and thermal noise in a
fading channel for a signal with equal direct and diffuse

components (A,/20°<1) and E,/N_=13.35 dB.
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Figure 31. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strong direct signal component

(A?/20%=10) and E,/N_=13.35 dB.
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Figure 32. 8quare-Law Detector self-Normalization
Combining: Worst case performance of the self-normalization
combining square-law detector receiver with diversity
combining, partial-band interference, and thermal noise in a
fading channel for a relatively strong direct signal

component (A2/202=10) and E /N =13.35 dB.
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Figure 33. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading

channel for a strong direct signal component (A§/202=1000)

and E,/N_=13.35 dB.
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Figure 34. 8quare-Law Detector Self-Normalization
Combining: Worst case performance of the self-normalization
combining square-law detector receiver with diversity
combining, partial-band interference, and thermal noise in a
fading channel for a strong direct signal component

(A%/20%=1000) and E,/N =13.35 dB.
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Figure 35. Envelope Detector self-Normaliza‘ion Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading

channel for a diffuse signal (A?/20%=0.01) and E_/N_=16 dB.

88




100

" —T T T =T — T -
o 2
b -
Eb/No=16 db, DD=0.01 )
:,f R -
. ~ -
& e
g 10} \ .
5 : . »; ) a
e T SN N
m F :;»\ \ -—
., - < -
= L S ]
g 02
|4 ! E .
a F ]
- l=1soldle T e ]
Lo e T |
L=2.. L=4 .. L=6__ 1=8°°
. -
-
10 3 i ' I i L s L
0 5 10 15 20 25 30 35 40

Figure 36.

Combining:

Eb/MNi db

Square-Law Detector Self-Normalization

Worst case performance of the self-normalization

combining square-law detector receiver with diversity

combining, partial-band interference, and thermal noise in a

fading channel for a diffuse signal (A%/20%=0.01) and

E,/N,=16 dB.
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Figure 37. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a signal with equal direct and diffuse

components (A?/20%=1) and E_ /N =16 dB.
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Figure 38. Square-Law Detector Self-Normalization
Combining: Worst case performance of the self-nbrmalization
combining square-law detector receiver with diversity
combining, partial-band intertference, and thermal noise in a
fading channel for a signal with equal direct and diffuse

components (A?/20°=1) and E_/N_=16 dB.
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Figure 39. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strong direct signal component

(A%/20°=10) and E,/N =16 dB.
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Figure 40.

Combining:

Square-Law Detector self-Normalization

combining square-law detector receiver with diversity

combining, partial-band interference,

fading channel for a relatively strong direct signal

component (A%/20%=10) and E/N_,=16 dB.
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Figure 41. Envelope Detector 8elf-Normalization Combining:

Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a strong direct signal component (A%/202=1000)

and E,/N,=16 dB.

94




PROBABILITY OF BIT ERROR

100,

101
Eb/No=16 db, DD=1000

-~

1021 ~
103+ \\\ |
103} R .
L=1 solid line ‘
1044 ) B
______________________ A
1=2.. L=4__. Ll=6__ L=8°**
]07 Y 1 n 1 ' !
0 5 10 15 20 25 30 35 40

Eb/Ni db

Figure 42. Square-Law Detector Self-Normalization
Combining: Worst case performance of the self-normalization
combining square-law detector receiver with diversity
combining, partial-band interference, and thermal noise in a
fading channel for a strong direct signal component

(A%/20%=1000) and E,/N =16 dB.
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Figure 43. Envelope Detector Self-Normalization Combining:
Worst case performance of the self-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strona direct signal component

(A%/20%=10) and E,/N =18 dB.
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Square-Law Detector S8elf-Normalization

Worst case performance of the self-normalization

combining square-law detector receiver with diversity
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fading channel for a relatively strong direct signal

component (A?/20%=10) and E_/N_=18 dB.
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Figure 45. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a diffuse signal (A2/202=0.01) and E /N =13.35

dB.
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Figure 47. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a signal with equal direct and diffuse

components (A%?/20°=1) and E,/N_=13.35 dB.
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Figure 48. Square-Law Detector Noise-Normalization
Combining: Worst case performance of the noise-
normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a signal with equal direct and

diffuse components (A2/202=1) and E /N =13.35 dB.

101




PROBABILITY OF BIT ERROR

10° -

”vr_T‘T—TT_T‘
1

Eb/No=13.35 db, DD=10
10 ’

i
|
’ “ N
E I :
r -
r o -
E \‘\\ .
N
| .A‘\‘.‘
102,
E.:
}—
F
10%
£ L=1 solid line BT SE .
t re »
flfzm L=4 . L=6__ L=8°* -
1()‘: " L : L L L L

<
W
[
=
—
W

20 25 30 35 40

Eb/Ni db

Figure 49. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strong direct signal component

(A%/20%=10) and E/N =13.35 dB.
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Figure 50. Square-lLaw Detector Noise-Normalization
Combining: Worst case performance of the Noise-
normalization combining square-law detector receiver with
diversity combining, partial-~-band interference, and thermal
noise in a fading channel for a relatively strong direct

signal component (A%/20%=10) and E,/N_=13.35 dB.
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Figure 51. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a strong direct signal component (A%?/202=1000)

and Evﬂ%=13.35 dB.

104




PROBABILITY OF BIT ERROR

10 -

10! Eb/No= 13.35 db, DD=1000 5
102 3
= 3]
N
103
L=1 solid line
10+
L=2.. L=4 _._
b Y L 1 L —L — v
% s 10 15 20 25 30 3 40
Eb/Ni db
Figure 52. B8quare-Law Detector Noise-Normalization
Combining: Worst case performance of the noise-

normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a strong direct signal

component (A?/202=1000) and E/N =13.35 dB.
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Figure 53. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading

channel for a diffuse signal (A?/20%=0.01) and E /N =16 dB.
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Figure 54.

Combining:

Square-Law Detector Noise-Normalization

Worst case performance of the noise-

normalization combining square-law detector receiver with

diversity combining, partial-band interference, and thermal

noise in a fading channel for a diffuse signal (A?/20%=0.01)

and Eb/N°=16

dB.
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Figure 55. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a signal with equal direct and diffuse

components (A?/20°=1) and E_/N =16 dB.
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Figure 56. B8quare-Law Detector Noise-Normalization
Combining: Worst case performance of the noise-
normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a signal with equal direct and

diffuse components (A%/20%=1) and E_ /N =16 dB.
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Figure 57. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strong direct signal component

2 2_ =
(A?/20%=10) and E,/N_=16 dB.

110




PROBABILITY OF BIT ERROR

~

W
eyl

Eb/MNo=16 db, DD=10

[N N S S sl

£
lozE : _.f;‘ \
f |

10° ]
10+ & 1
N =
N 3
L=1 solid line S .
103 " e |
L=2.. L=4 _ 1=6__ 1=8°* ) N::’::‘.‘-‘::’-:-1'-1-‘-'.:.'.’.::.:::.:::_::,-;:]
10 é e L i L I 1 A
0 S 10 15 20 25 30 35 40

Eb/Ni db

Figure 58. 8quare-Law Detector Noise-normalization
Combining: Worst case performance of the noise-
normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a relatively strong direct

signal component (A%/20°=10) and E_ /N_=16 dB.

111




PROBABILITY OF BIT £<RROR

100 _

10 4
102 |
]O']r- ~
104}
103} -
108} 4
L=1 solid line . T T
10 ? e T
L=2.. L=4 _._ L=6__ L=8* T
10“— 1 1 i 1 . I 1
0 5 10 15 20 25 30 35 40
Eb/MNi db
Figure 59. Envelope Detector Noise-Normalization Combining:

Worst case performance of the noise-normalization combining

envelope detector receiver with diversity combining,

partial-band interference, and thermal noise in a fading

channel for a strong direct signal component (A%/20%=1000)

and E,/N =16 dB.
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Figure 60. Square-Law Detector Noise-Normalization
Combining: Worst case performance of the noise-
normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a strong direct signal

component (A?/20%=1000) and E,/N,=16 dB.
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Figure 61. Envelope Detector Noise-Normalization Combining:
Worst case performance of the noise-normalization combining
envelope detector receiver with diversity combining,
partial-band interference, and thermal noise in a fading
channel for a relatively strong direct signal component

(A?/20%=10) and E_/N =18 dB.
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Figure 62. 8quare-Law Detector Noise-Normalization
Combining: Worst case performance of the noise-
normalization combining square-law detector receiver with
diversity combining, partial-band interference, and thermal
noise in a fading channel for a relatively strong direct

signal component (A?/20%=10) and E,/N =18 dB.
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Figure 63. Envelope Detector Linear and Noise-Normalization
Combining: Performance of the linear and noise-
normalization combining envelope detector receiver with
diversity combining, and thermal noise in a fading channel

for a diffuse signal (A?/20%=0.01).
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Figure 64.

Normalization Combining:

Square-Law Detector Linear

and Noise-

Performance of the linear and

noise-normalization combining square-law detector receiver

with diversity combining, and thermal noise in a fading

channel for a diffuse signal (A%/2¢%?=0.01).
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Figure 65. Envelope Detector Linear and Noise-Normalization
Combining: Performance of the linear and noise-

* normalization combining envelope detector receiver with
diversity combining, and thermal noise in a fading channel

for a signal with equal direct and diffuse components

(AZ/20%=1).
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Figure 66. S8Square-Law Detector Linear and Noise-
Normalization Combining: Performance of the linear and
noise-normalization combining square-law detector receiver
with diversity combining, and thermal noise in a fading
channel for a signal with equal diffuse and direct

components (A2/202=1) .
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Figure 67. Envelope Detector Linear and Noise-Normalization
Combining: Performance of the linear and noise-
normalization combining envelope detector receiver with
diversity combining, and thermal noise in a fading channel

for a relatively strong direct signal (a2/20%=10).
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Figure 68. Square-Law Detector Linear and Noise-
Normalization Combining: Performance of the linear and
noise-normalization combining square-law detector receiver
with diversity combining, and thermal noise in a fading

channel for a relatively strong direct signal (A2/20%=10) .
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Figure 69. Envelope Detector Linear and Noise-Normalization
Combining: Performance of the linear and noise-
normalization combining envelope detector receiver with
diversity combining, and thermal noise in a fading channel

for a sticng direct signal (A?/20%=1000).
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Figure 70. Square-Law Detector Linear and Noise-
Normalization Combining: Performance of the linear and
noise-normalization combining square-law detector receiver
with diversity combining, and thermal noise in a fading

channel for a strong direct signal (A%?/20%=1000).
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Figure 71. Envelope Detector Self-Normalization Combining:
Performance of the self-normalization combining envelope
detector receiver with diversity combining, and thermal
noise in a fading channel for a diffuse signal

(42/20%=0.01) .
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Figure 72. 8quare-Law Detector Self-Normalization
Combining: Performance of the self-normalization combining
square-law detector receiver with diversity combining, and
thermal noise in a fading channel for a diffuse signal

(A%/20%=0.01).
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Figure 73. Envelope Detector Self-Normalization Combining:
Performance of the linear and self-normalization combining
envelope detector receiver with diversity combining, and
thermal noise in a fading channel for a signal with equal

direct and diffuse components (A%2/20%=1).

126




lon £ : T T T T T T T n =
B . 3
Lo . h
T j
r i 4
1001 |
g
o i 4
: ]
&
2
= 10 E \§
m —
& E ]
1
Eo ., :
=R : |
2 3. :
£ ]
C S B
£ ;
| :
1()4L L=1{ solid hine J
v r !
- ~q
- R
~ L=2.. L=4 .. L=6__ L=8°** ,
-
|
1073 L 4 L L 1 1 L 1 L J
0 2 4 6 8 10 12 14 16 18 20
Eb/MNo db

Figure 74. Square-Law Detector Self-normalization
Combining: Performance of the self-normalization combining
square-law detector receiver with diversity combining, and
thermal noise in a fading channel for a signal with equal

diffuse and direct components (A%/202=1).
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Figure 75. Envelope Detector Self-Normalization Combining:
Performance of the self-normalization combining envelope
detector receiver with diversity combining, and thermal
noise in a fading channel for a relatively strong direct

signal (A%/20%=10).
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Figure 76. Square-Law Detector sSelf-Normalization
Combining: Performance of the self-normalization combining
sgquare-law detector receiver with diversity combining, and

thermal noise in a fading channel for a relatively strong

direct signal (A%?/20%=10).
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Figure 77. Envelope Detector gself-Normalization Combining:

Performance of the self-normalization combining envelope

detector receiver with diversity combining, and thermal

noise in a fading channel for a strong direct signal

(A2/20%=1000) .
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Figure 78. 8quare-Law Detector Self-Normalization

Eb/MNo db

16

Combining: Performance of the self-normalization combining

square-law detector receiver with diversity combining, and

thermal noise in a fading channel for a strong direct signal

(A2/20%=1000).
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Figure 79. Envelope Detector Noise-Normalization Combining:
Performance of the noise-normalization combining envelope
detector receiver with diversity combining, and partial-band
interference in the absence of thermal noise, and in a

fading channel for a relatively strong direct signal

(A%/20%=10) .
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Figure 80. Square-Law Detector Noise-Normalization
Combining: Performance of the noise-normalization combining
square-law detector receiver with diversity combining, and
partial-band interference, in the absence of thermal noise,
and in a fading channel for a relatively strong direct

signal (A%/20%=10).
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Figure 81. Envelope Detector S8elf-Normalization Combining:
Performance of the self-normalization combining envelope
detector receiver with diversity combining, and partial-band
interference in the absence of thermal noise, and in a

fading channel for a relatively strong direct signal

(A%2/20%°=10) .
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Figure 82. 8Square-Law Detector Self-Normalization
Combining: Performance of the self-normalization combining
square-law detector receiver with diversity combining, and
partial-band interference, in the absence of thermal noise,

and in a fading channel for a relatively strong direct

signal (A%/20°=10).
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